【BZOJ1758】【WC2010】重建计划(点分治,单调队列)
题面
Description
第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号
Output
输出最大平均估值,保留三位小数
4
2 3
1 2 1
1 3 2
1 4 3
Sample Output
2.500
HINT
N<=100000,1<=L<=U<=N-1,Vi<=1000000
题解
我这鬼代码在BZOJ上跑不过去
因为
\(BZOJ\)添加了一组很鬼畜的数据,导致
\(BZOJ\)上会
\(TLE\) 洛谷上能过。
表示完全不会点分治了,这道题目就当复习用。
每次我们二分一个答案,将所有的边权全部减去这个二分的值
此时题目相当于询问是否存在一条边数在
\([L,U]\)之间,权值和大于
\(0\)的路径。
考虑每个分治重心的贡献,依次计算当前重心的每一棵子树,
求出所有点的深度(经过的边数),以及权值和
对于每个深度,维护一个前面所有子树的最大权值和。
为了方便计算,按照所有点按照深度排序,这样就用
\(bfs\)便利子树就行了。
开始考虑前面的所有子树与当前子树的贡献
用一个指针从大到小维护所有可以的前面子树中的链
同时用单调队列维护一下单调性
每次取出满足经过的边数在
\([L,U]\)之间,并且权值和最大的边出来进行组合,计算一下是否满足二分的答案就好了。。
#include #include #include #include #include #include #include #include